GD150HFT120C2S IGBT Module

STARPOWER

SEMICONDUCTOR™

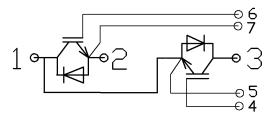
IGBT

GD150HFT120C2S

Preliminary

Molding Type Module

1200V/150A 2 in one-package



General Description

STARPOWER IGBT Power Module provides ultra low conduction loss as well as short circuit ruggedness. They are designed for the applications such as general inverters and UPS.

Features

- Low V_{CE(sat)} trench IGBT technology
- Low switching losses
- 10µs short circuit capability
- Maximum junction temperature 175 ℃
- V_{CE(sat)} with positive temperature coefficient
- Low inductance case
- Fast & soft reverse recovery anti-parallel FWD
- Isolated copper baseplate using DBC technology

Equivalent Circuit Schematic

Typical Applications

- AC inverter drives
- Switching mode power supplies
- Electronic welders

Absolute Maximum Ratings $T_C=25$ °C unless otherwise noted

Symbol	Description	GD150HFT120C2S	Units
V_{CES}	Collector-Emitter Voltage	1200	V

Symbol	Description	GD150HFT120C2S	Units
V_{GES}	Gate-Emitter Voltage	±20	V
T	Collector Current @ T _C =25°C	255	Δ.
I_{C}	@ T _C =80°C	150	A
$I_{CM(1)}$	Pulsed Collector Current t _p =1ms	300	A
I_{F}	Diode Continuous Forward Current	150	A
I_{FM}	Diode Maximum Forward Current	300	A
P_{D}	Maximum Power Dissipation @ $T_j=175$ °C	1000	W
T_{SC}	Short Circuit Withstand Time @ $T_j=125$ °C	10	μs
$T_{\rm j}$	Maximum Junction Temperature	175	$^{\circ}\!\mathbb{C}$
T_{STG}	Storage Temperature Range	-40 to +125	$^{\circ}\!\mathbb{C}$
I ² t-value,Diode	$V_R=0V,t=10ms,T_j=125$ °C	4500	A^2s
$V_{\rm ISO}$	Isolation Voltage RMS,f=50Hz,t=1min	2500	V
Mounting Torque	Power Terminal Screw:M6	2.5 to 5.0	N.m
Mounting Torque	Mounting Screw:M6	3.0 to 5.0	N.m

Notes:

(1) Repetitive rating: Pulse width limited by max. junction temperature

Electrical Characteristics of IGBT $_{T_{C}\!=\!25\,^{\circ}\!C}$ unless otherwise noted

Off Characteristics

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Units
V _{(BR)CES}	Collector-Emitter	$V_{GE}=0V, I_{C}=250\mu A,$	1200	200		17
	Breakdown Voltage	V_{GE} =0V, I_{C} =250 μ A, T_{j} =25 $^{\circ}$ C	1200			V
I _{CES}	Collector Cut-Off Current	$V_{\text{CE}}=V_{\text{CES}}, V_{\text{GE}}=0V,$			5.0	A
		T _j =25℃		3.0	mA	
I_{GES}	Gate-Emitter Leakage	$V_{GE}=V_{GES}, V_{CE}=0V,$		400		nA
	Current	$T_j=25^{\circ}C$			400	

On Characteristics

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Units
$V_{\text{GE(th)}}$	Gate-Emitter Threshold Voltage	$I_{C}=3.5$ mA, $V_{CE}=V_{GE}$, $T_{j}=25$ °C	5.0		7.5	V
V _{CE(sat)}	Collector to Emitter	$I_{C}=150A, V_{GE}=15V,$ $T_{j}=25^{\circ}C$		2.00	2.30	V
	Saturation Voltage	$I_{C}=150A, V_{GE}=15V,$ $T_{j}=175^{\circ}C$		2.60		

Switching Characteristics

Symbol	Parameter Test Conditions		Min.	Тур.	Max.	Units
$t_{d(on)}$	Turn-On Delay Time	$V_{CC}=600V, I_{C}=150A,$		65		ns
t_r	Rise Time	$R_G=2.3\Omega, V_{GE}=\pm 15V,$		120		ns
$t_{d(off)}$	Turn-Off Delay Time	T _j =25℃		300		ns

$t_{\rm f}$	Fall Time		120		ns
Eon	Turn-On Switching Loss	V_{CC} =600V, I_{C} =150A, R_{G} =2.3 Ω , V_{GE} = \pm 15V,	15.4		mJ
E _{off}	Turn-Off Switching Loss	T _j =25°C	9.2		mJ
t _{d(on)}	Turn-On Delay Time		65		ns
t _r	Rise Time		120		ns
t _{d(off)}	Turn-Off Delay Time	V (00VI 150A	350		ns
$t_{\rm f}$	Fall Time	$V_{CC}=600V,I_{C}=150A,$	250		ns
Eon	Turn-On Switching Loss	$R_{G}=2.3\Omega, V_{GE}=\pm 15V, T_{j}=175^{\circ}C$	22.0		mJ
$E_{ m off}$	Turn-Off Switching Loss		14.8		mJ
Cies	Input Capacitance		18.9		nF
Coes	Output Capacitance	$V_{CE}=30V, f=1MHz,$	0.68		nF
C_{res}	Reverse Transfer Capacitance	V _{GE} =0V	0.46		nF
I_{SC}	SC Data	$t_{S^{C}} \le 10 \mu s, V_{GE} = 15 V,$ $T_{j} = 125 ^{\circ}\text{C}, V_{CC} = 900 V,$ $V_{CEM} \le 1200 V$	TBD		A
R_{Gint}	Internal Gate Resistance		2.5		Ω
L _{CE}	Stray Inductance			20	nН
R _{CC'+EE'}	Module Lead Resistance, Terminal to Chip	T _C =25°C	0.35		mΩ

Electrical Characteristics of DIODE $T_C=25$ °C unless otherwise noted

Symbol	Parameter	Test Conditions		Min.	Тур.	Max.	Units
V_{F}	Diode Forward	I 150 A	T _j =25℃		1.75	2.15	V
	Voltage	$I_F=150A$	T _j =125℃		1.80		
Qr	December Change		T _j =25℃		15		μС
	Recovered Charge	$I_F=150A$,	T _j =125℃		30		
T	Peak Reverse	$V_R = 600V$,	T _j =25℃		105		٨
I_{RM}	Recovery Current	di/dt=-1500A/μs,	T _j =125℃		140		A
E_{rec}	Reverse Recovery	V _{GE} =-15V	T _j =25℃		7.5		an I
	Energy		T _j =125 ℃		11.5		mJ

Thermal Characteristics

Symbol	Parameter		Max.	Units
$R_{ heta JC}$	Junction-to-Case (IGBT Part, per 1/2 Module)		0.15	K/W
$R_{ heta JC}$	Junction-to-Case (DIODE Part, per 1/2 Module)		0.25	K/W
$R_{\theta CS}$	Case-to-Sink (Conductive grease applied)	0.035		K/W
Weight	Weight of Module	300		g

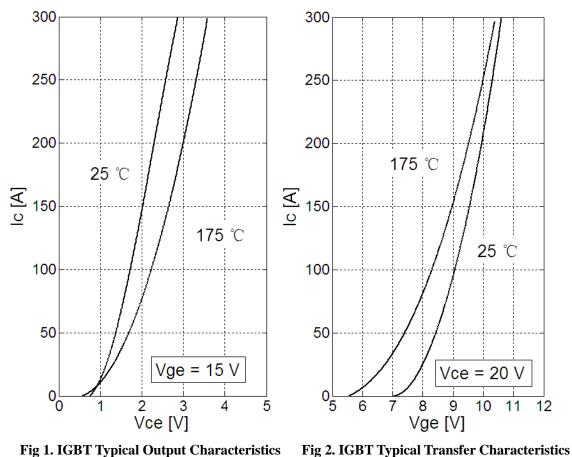


Fig 1. IGBT Typical Output Characteristics

80 50 Vcc = 600 V 45 70 $Rg = 2.3 \Omega$ Vge = ±15 V Tj = 175 ℃ 60 35 Eon 50 Eon, Eoff [mJ] Eon, Eoff [mJ] 30 Eon 25 **Eoff** 20 30 15 20 Vce = 600 V 10 **Eoff** Ic = 150 A10 $Vge = \pm 15 V$ 5 Ti = 175 ℃ 50 100 150 200 250 300 5 10 15 20 25 Ic [A] $Rg[\Omega]$

Fig 3. IGBT Switching Loss vs. I_C

Fig 4. IGBT Switching Loss vs. R_G

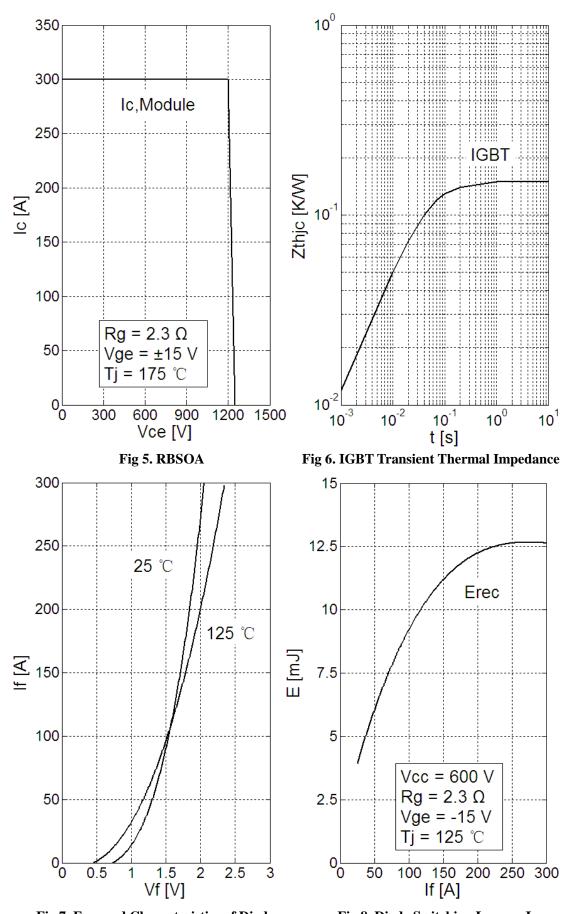
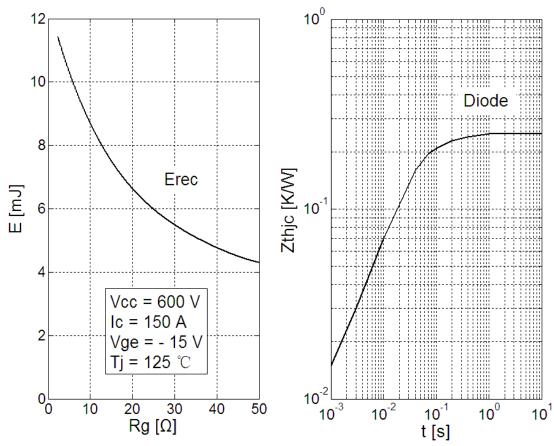
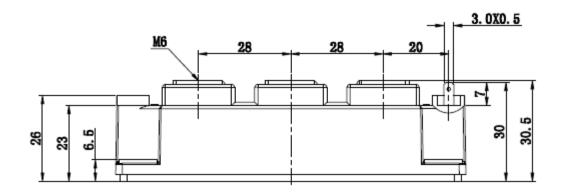


Fig 7. Forward Characteristics of Diode

Fig 8. Diode Switching Loss vs. $I_{\rm f}$

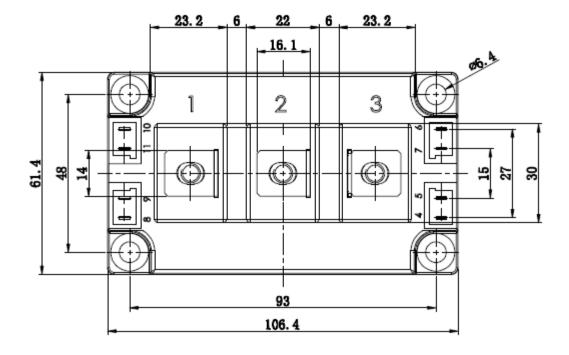

Fig 9. Diode Switching Loss vs. $R_{\rm G}$

Fig 10. Diode Transient Thermal Impedance

Package Dimension

Dimensions in Millimeters

GD150HFT120C2S IGBT Module

Terms and Conditions of Usage

The data contained in this product datasheet is exclusively intended for technically trained staff. you and your technical departments will have to evaluate the suitability of the product for the intended application and the completeness of the product data with respect to such application.

This product data sheet is describing the characteristics of this product for which a warranty is granted. Any such warranty is granted exclusively pursuant the terms and conditions of the supply agreement. There will be no guarantee of any kind for the product and its characteristics.

Should you require product information in excess of the data given in this product data sheet or which concerns the specific application of our product, please contact the sales office, which is responsible for you (see www.powersemi.cc), For those that are specifically interested we may provide application notes.

Due to technical requirements our product may contain dangerous substances. For information on the types in question please contact the sales office, which is responsible for you.

Should you intend to use the Product in aviation applications, in health or live endangering or life support applications, please notify.

If and to the extent necessary, please forward equivalent notices to your customers. Changes of this product data sheet are reserved.

©2010 STARPOWER Semiconductor Ltd.

5/17/2010