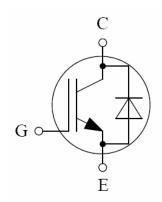
$DOSEMI^{TM}$

IGBT

Preliminary

GD25SGT120T2S

1200V/25A 1 in one-package


General Description

DOSEMI IGBT Power Discretes provides ultra low conduction loss as well as short circuit ruggedness. They are designed for the applications such as Electronic welders.

G C E TO-247

Features

- Low V_{CE(sat)} trench IGBT technology
- Low switching loss
- Maximum junction temperature 175°C
- 10µs short circuit capability
- Square RBSOA
- V_{CE(sat)} with positive temperature coefficient
- Fast & soft reverse recovery anti-parallel FWD
- Tight parameter distribution
- Lead free package

Equivalent Circuit Schematic

Typical Applications

Electronic welders

Absolute Maximum Ratings $T_C=25$ °C unless otherwise noted

Symbol	Description	GD25SGT120T2S	Units
V_{CES}	V _{CES} Collector-Emitter Voltage		V
$V_{ m GES}$	Gate-Emitter Voltage	±20	V
T	Collector Current @ T _C =25°C	50	A
I_{C}	@ T _C =100°C	25	А
I _{CM(1)}	Pulsed Collector Current t _p =1ms	50	A
ī	Diode Continuous Forward Current	25	A
I_{F}	@ T _C =100°C	25	A
$I_{FM(1)}$	Diode Maximum Forward Current	50	A
P_{D}	Maximum power Dissipation @ T _j =175°C	517	W
T_{SC}	Short Circuit Withstand Time @ T _j =150°C	10	μs
T_{j}	Maximum Junction Temperature	175	$^{\circ}\!\mathbb{C}$
T_{STG}	Storage Temperature Range	-40 to +125	$^{\circ}\!\mathbb{C}$
Т	Soldering Temperature, 1.6mm from case	260	$^{\circ}$
T_{S}	for 10s	260	

Notes:

(1) Repetitive rating: Pulse width limited by max. junction temperature

Electrical Characteristics T_C=25 °C unless otherwise noted

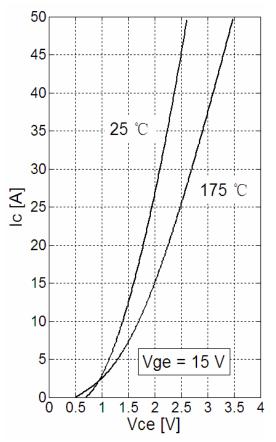
Off Characteristics

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Units
3 7	Collector-Emitter	T-25°C	1200			17
$V_{(BR)CES}$	Breakdown Voltage	T _j =25℃	1200			V
ī	Collector Cut-Off Current	$V_{\text{CE}}=V_{\text{CES}}, V_{\text{GE}}=0V,$			25	4
I_{CES}	T _j	T _j =25℃			25	μΑ
т	Gate-Emitter Leakage	$V_{GE}=V_{GES},V_{CE}=0V,$			100	4
I_{GES}	Current	T _j =25℃			100	nA

On Characteristics

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Units
V	Gate-Emitter Threshold	$I_C=1.2$ mA, $V_{CE}=V_{GE}$,	5.0	6.1	7.5	V
V _{GE(th)}	Voltage	T _j =25℃	5.0	0.1	7.3	v
	$I_{C}=25A, V_{GE}=15V,$ $T_{j}=25^{\circ}C$ Collector to Emitter $I_{C}=25A, V_{GE}=15V,$ $I_{C}=25A, V_{CE}=15V,$ $I_{C}=$	I_{C} =25A, V_{GE} =15V,		1.94	2.3	
			1.94	2.3	V	
$V_{\text{CE}(\text{sat})}$		I_{C} =25A, V_{GE} =15V,	,	2.40		V
		T _j =150°C		2.40		
		I_{C} =25A, V_{GE} =15V,	2	2.50		
		T _j =175℃		2.50		

Switching Characteristics


Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Units
Qg	Total Gate Charge	V -600VI -25A		160		nC
Q _{ge}	Gate-to-Emitter Charge	V_{CC} =600V, I_{C} =25A, V_{GE} =15V		30		nC
Qgc	Gate-to-Collector Charge	V GE-13 V		70		nC
t _{d(on)}	Turn-On Delay Time			60		ns
t _r	Rise Time			35		ns
t _{d(off)}	Turn-Off Delay Time			230		ns
t_{f}	Fall Time	$V_{CC}=600V,I_{C}=25A,$		70		ns
E _{on}	Turn-On Switching	$R_G=10\Omega, V_{GE}=15V,$		1.61		mJ
Lon	Loss	T _j =25℃		1.01		1113
E_{off}	Turn-Off Switching			1.25		mJ
	Loss			1.23		1113
E _{total}	Total Switching Loss			2.86		mJ
t _{d(on)}	Turn-On Delay Time			60		ns
t _r	Rise Time			40		ns
$t_{d(off)}$	Turn-Off Delay Time			275		ns
$t_{\rm f}$	Fall Time	V_{CC} =600V, I_{C} =25A,		200		ns
Eon	Turn-On Switching	$R_G=10\Omega, V_{GE}=15V,$		2.69		mJ
Lon	Loss	T _j =175℃		2.00		1113
E_{off}	Turn-Off Switching			2.11		mJ
	Loss					1110
E _{total}	Total Switching Loss			4.80		mJ
Cies	Input Capacitance			3.43		nF
Coes	Output Capacitance	V_{CE} =30V,f=1MHz,		0.13		nF
C_{res}	Reverse Transfer	$V_{GE}=0V$		0.08		nF
103	Capacitance					

Electrical Characteristics of DIODE T_C=25°C unless otherwise noted

Symbol	Parameter	Test Conditions		Min.	Тур.	Max.	Units	
17	Diode Forward	I -25 A	T _j =25℃		2.10	2.50	V	
V_{F}	Voltage	$I_F=25A$	T _j =125℃		2.15			
0	Dagayanad Changa		T _j =25℃		1.6			
Q_{r}	Recovered Charge	$I_F=25A$,	T _j =125℃		3.3		μC	
T	Reverse Recovery	$V_R = 600 V$,	T _j =25℃		16			
I_{RM}	Current	$di/dt=-400A/\mu s$,	T _j =125℃		21		A	
Е	Reverse Recovery	V_{GE} =-15V	T _j =25℃		0.4		T	
E_{rec}	Energy		T _j =125℃		0.8		mJ	

Thermal Characteristics

Symbol	Parameter	Typ.	Max.	Units
$R_{\theta JC}$	Junction-to-Case (Per IGBT)		0.29	K/W
$R_{\theta JC}$	Junction-to-Case (Per Diode)		0.58	K/W
$R_{\theta JA}$	Junction-to-Ambient (Conductive grease applied)	40		K/W

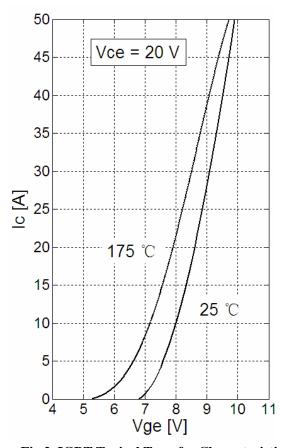


Fig 1. IGBT Typical Output Characteristics

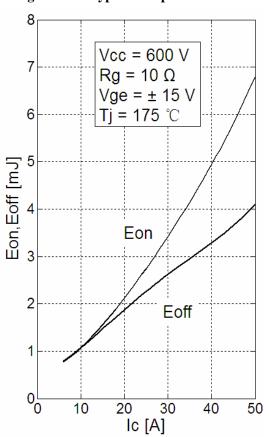


Fig 3. IGBT Switching Loss vs. $I_{\rm C}$

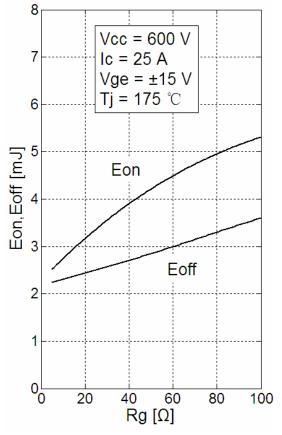


Fig 4. IGBT Switching Loss vs. R_G

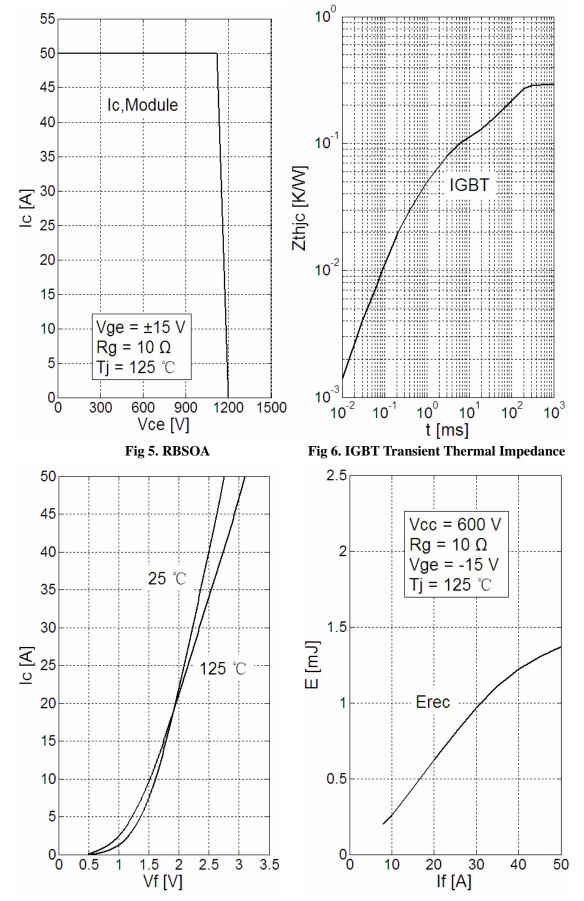


Fig 7. Diode Forward Characteristics

Fig 8. Diode Switching Loss vs. I_F

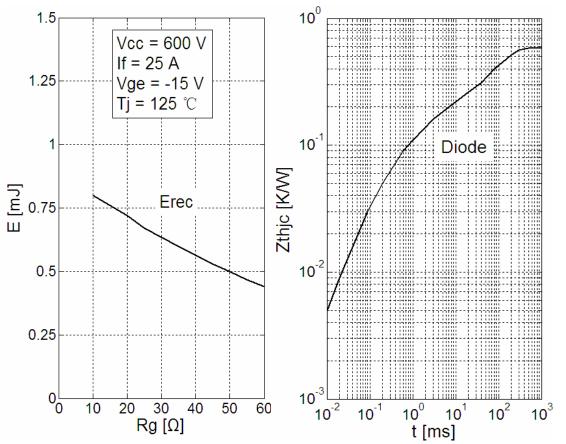
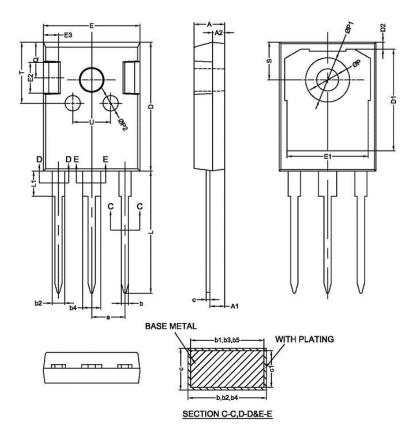



Fig 9. Diode Switching Loss vs. R_G

Fig 10. Diode Transient Thermal Impedance

Package Dimension

Dimensions in Millimeters

COMMON DIMENSIONS (UNITS OF MEASURE=MILLIMETER)

SYMBOL	MIN	NOM	MAX	
Α	4.90	5.00	5.10	
A1	2.31	2.41	2.51	
A2	1.90	2.00	2.10	
b	1.16	() () () () () ()	1.26	
b1	1.15	1.2	1.22	
b2	1.96	(i) =	2.06	
b3	1.95	2.00	2.02	
b4	2.96		3.06	
b5	2.95	3.00	3.02	
С	0.59	-	0.66	
c1	0.58	0.60	0.62	
D	20.90	21.00	21.10	
D1	16.25	16.55	16.85	
D2	1.05	1.20	1.35	
E	15.70	15.80	15.90	
E1	13.10	13.30	13.50	
E2	4.90	5.00	5.10	
E3	2.40	2.50	2.60	
е		5.44BSC	9	
L	19.80	19.92	20.10	
L1	-	-	4.30	
P	3.50	3.60	3.70	
P1		-	7.40	
P2	2.40	2.50	2.60	
Q	5.60	1005	6.00	
S	6.15BSC			
T	9.80	3.5	10.20	
U	6.00	: 0. - 0	6.40	

NOTES:

1.ALL DIMENSIONS REFER TO JEDEC STANDARD
TO-247 AD DO NOT INCLUDE MOLD FLASH
OR PROTRUSIONS.

2.EJECTION MARK DEPTH 0.10**0.05*.

©2010 Zhejiang Dos Technologies Ltd.

9/25/2010

Terms and Conditions of Usage

The data contained in this product datasheet is exclusively intended for technically trained staff. you and your technical departments will have to evaluate the suitability of the product for the intended application and the completeness of the product data with respect to such application.

This product data sheet is describing the characteristics of this product for which a warranty is granted. Any such warranty is granted exclusively pursuant the terms and conditions of the supply agreement. There will be no guarantee of any kind for the product and its characteristics.

Should you require product information in excess of the data given in this product data sheet or which concerns the specific application of our product, please contact the sales office, which is responsible for you, For those that are specifically interested we may provide application notes.

Due to technical requirements our product may contain dangerous substances. For information on the types in question please contact the sales office, which is responsible for you.

Should you intend to use the Product in aviation applications, in health or live endangering or life support applications, please notify.

If and to the extent necessary, please forward equivalent notices to your customers. Changes of this product data sheet are reserved.