GD50HCU120C5S IGBT Module

STARPOWER

SEMICONDUCTOR™

IGBT

GD50HCU120C5S

Preliminary

Molding Type Module

1200V/50A 4 in one-package

General Description

STARPOWER IGBT Power Module provides ultrafast switching speed as well as short circuit ruggedness. It's designed for the applications such as electrical welding and inductive heating.

Features

- Low V_{CE(sat)} NPT IGBT technology
- 10µs short circuit capability
- V_{CE(sat)} with positive temperature coefficient
- Rugged with ultrafast performance
- Square RBSOA
- Low inductance case
- Fast & soft reverse recovery anti-parallel FWD
- Isolated copper baseplate using DBC technology

Typical Applications

- Switching mode power supplies
- Inductive heating
- Electrical welding

GD50HCU120C5S IGBT Module

IGBT-inverter T_C=25 °C unless otherwise noted

Maximum Rated Values

Symbol	Description	GD50HCU120C5S	Units	
V_{CES}	Collector-Emitter Voltage @ T _j =25°C	1200	V	
V_{GES}	Gate-Emitter Voltage	±20	V	
$I_{\rm C}$	Collector Current @ T _C =25°C	75	Α.	
	@ T _C =80°C	50	Α	
I_{CM}	Pulsed Collector Current t _p =1ms	100	A	
P _{tot}	Total Power Dissipation @ T _j =150°C	417	W	
T_{SC}	Short Circuit Withstand Time @ T _j =125°C	10	μs	

Off Characteristics

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Units
V _{(BR)CES}	Collector-Emitter	T-25°C	1200	0		17
	Breakdown Voltage	T _j =25℃				·
I _{CES}	Collector Cut Off Current	$V_{\text{CE}}=V_{\text{CES}}, V_{\text{GE}}=0V,$			1.0	mA
	Collector Cut-Off Current	T _j =25℃				
I _{GES}	Gate-Emitter Leakage	$V_{GE}=V_{GES}, V_{CE}=0V,$			400	nA
	Current	T _j =25 ℃			400	

On Characteristics

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Units
$V_{\text{GE(th)}}$	Gate-Emitter	$I_{C}=500\mu A, V_{CE}=V_{GE},$	4.4	5.2	6.0	V
	Threshold Voltage	T _j =25℃	4.4	3.2	0.0	V
V _{CE(sat)}	Collector to Emitter	$I_{C}=50A, V_{GE}=15V, T_{j}=25^{\circ}C$		3.15	3.60	W
	Saturation Voltage	$I_{C}=50A, V_{GE}=15V, T_{j}=125 ^{\circ}C$		3.60]

Switching Characteristics

Symbol	Parameter	Test Conditions	Min.	Typ.	Max.	Units
$t_{d(on)}$	Turn-On Delay Time			262		ns
t _r	Rise Time			52		ns
$t_{d(off)}$	Turn-Off Delay Time	V -600VI -50A		272		ns
$t_{\rm f}$	Fall Time	$V_{CC}=600V,I_{C}=50A,$ $R_{G}=13\Omega,V_{GE}=\pm 15V,$ $T_{j}=25^{\circ}C$		116		ns
Eon	Turn-On Switching			4.69		mJ
	Loss					
E	Turn-Off Switching			1.89		mJ
E _{off}	Loss					
$t_{d(on)}$	Turn-On Delay Time	V_{CC} =600V, I_{C} =50A, R_{G} =13 Ω , V_{GE} = \pm 15V, T_{j} =125 $^{\circ}$ C		276		ns
t_r	Rise Time			53		ns
$t_{d(off)}$	Turn-Off Delay Time			290		ns
t_{f}	Fall Time			146		ns

GD50HCU120C5S IGBT Module

Eon	Turn-On Switching Loss	V_{CC} =600V, I_{C} =50A, R_{G} =13 Ω , V_{GE} = \pm 15V, T_{j} =125 $^{\circ}$ C	5.92	mJ
E_{off}	Turn-Off Switching Loss		2.69	mJ
Cies	Input Capacitance		4300	pF
Coes	Output Capacitance	V _{CE} =30V,f=1Mhz, V _{GE} =0V	330	pF
C_{res}	Reverse Transfer Capacitance		160	pF
I_{SC}	SC Data	$T_P \le 10 \mu s, V_{GE} = 15 V,$ $T_j = 125 ^{\circ}C, V_{CC} = 900 V,$ $V_{CEM} \le 1200 V$	TBD	A

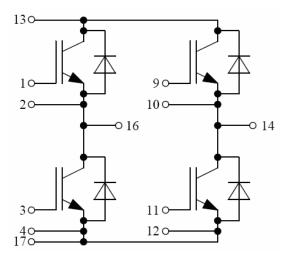
DIODE-inverter T_C =25°C unless otherwise noted

Maximum Rated Values

Symbol	Description	GD50HCU120C5S	Units
V_{RRM}	Collector-Emitter Voltage @ T _j =25°C	1200	V
I_F	DC Forward Current	50	A
I_{FRM}	Repetitive Peak Forward Current t _p =1ms	100	A
I^2t	I^2 t-value, V_R =0 V , t_p =10ms, T_j =125°C	1250	A^2s

Characteristics Values

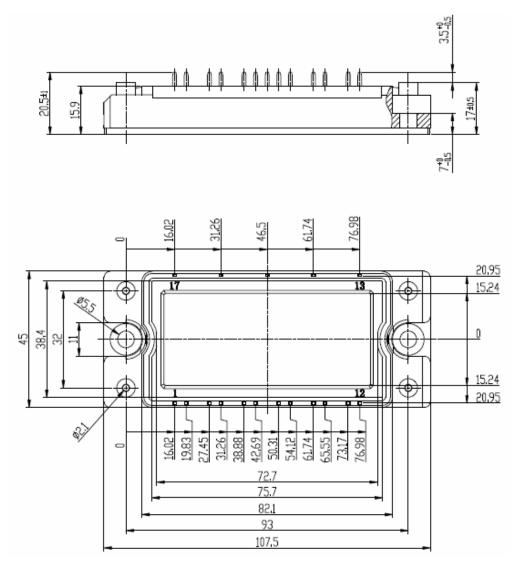
Symbol	Parameter	Test Conditions		Min.	Тур.	Max.	Units
X 7	Diode Forward	I -50 A W -0W	T _j =25℃		1.82	2.25	V
V_{F}	Voltage	$I_F=50A, V_{GE}=0V$	T _j =125℃		1.95] V
Qr	Dagayarad Charga		T _j =25℃		3.5		μС
	Recovered Charge	$I_F=50A$,	T _j =125℃		9.0		
I_{RM}	Peak Reverse	$V_R = 600V$,	T _j =25℃		23		Α.
	Recovery Current	di/dt=-1100A/μs,	T _j =125℃		50		A
E _{rec}	Reverse Recovery	$V_{GE}=-15V$	T _j =25℃		1.2		an I
	Energy		T _j =125℃		3.3		mJ


GD50HCU120C5S IGBT Module

IGBT Module

Symbol	Parameter	Min.	Тур.	Max.	Units
V _{ISO}	Isolation Voltage RMS,f=50Hz,t=1min		2500		V
L_{CE}	Stray Inductance		19		nН
R _{CC'+EE'}	Module Lead Resistance, Terminal to Chip @ T _C =25°C		2.5		mΩ
$R_{\theta JC}$	Junction-to-Case (per IGBT-inverter)			0.30	K/W
	Junction-to-Case (per DIODE-inverter)			0.49	
$R_{\theta CS}$	Case-to-Sink (Conductive grease applied)		0.02		K/W
T_j	Maximum Junction Temperature			150	$^{\circ}$
T_{STG}	Storage Temperature Range	-40		125	$^{\circ}$ C
Mounting	Mounting ConsynM5	3.0		6.0	NI an
Torque	Mounting Screw:M5			6.0	N.m
G	Weight of Module		200		g

GD50HCU120C5S IGBT Module


Equivalent Circuit Schematic

Pins 5,6,7,8,15 are not connected

Package Dimension

Dimensions in Millimeters

GD50HCU120C5S IGBT Module

Terms and Conditions of Usage

The data contained in this product datasheet is exclusively intended for technically trained staff. you and your technical departments will have to evaluate the suitability of the product for the intended application and the completeness of the product data with respect to such application.

This product data sheet is describing the characteristics of this product for which a warranty is granted. Any such warranty is granted exclusively pursuant the terms and conditions of the supply agreement. There will be no guarantee of any kind for the product and its characteristics.

Should you require product information in excess of the data given in this product data sheet or which concerns the specific application of our product, please contact the sales office, which is responsible for you (see www.powersemi.cc), For those that are specifically interested we may provide application notes.

Due to technical requirements our product may contain dangerous substances. For information on the types in question please contact the sales office, which is responsible for you.

Should you intend to use the Product in aviation applications, in health or live endangering or life support applications, please notify.

If and to the extent necessary, please forward equivalent notices to your customers. Changes of this product data sheet are reserved.

©2010 STARPOWER Semiconductor Ltd.

11/30/2010