STARPOWER

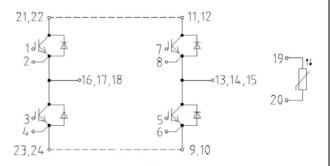
SEMICONDUCTOR™

IGBT

GD50HHU60C5S

Molding Type Module

600V/50A 4 in one-package


General Description

STARPOWER IGBT Power Module provides ultrafast switching speed as well as short circuit ruggedness. It's designed for the applications such as electronic welder and Inductive heating.

Features

- High short circuit capability, self limiting to 6*I_{Cnom}
- 10us short circuit capability
- V_{CE(sat)} with positive temperature coefficient
- Rugged with ultrafast performance
- Square RBSOA
- Low inductance case
- Fast & soft reverse recovery anti-parallel FWD
- Isolated copper baseplate using DCB technology

Equivalent Circuit Schematic

Typical Applications

- Switching mode power supplies at f_{SW}>30kHz
- Inductive heating
- UPS
- Electronic welder at f_{SW}>30kHz

Absolute Maximum Ratings $T_C=25$ °C unless otherwise noted

Symbol	Description	GD50HHU60C5S	Units
V_{CES}	Collector-Emitter Voltage	600	V
$V_{ m GES}$	Gate-Emitter Voltage	±20V	V
T	Collector Current @ $T_C=25^{\circ}C$, $T_j=150^{\circ}C$	75	<u> </u>
$I_{\rm C}$	@ T _C =80°C, T _j =150°C	50	A
I _{CM(1)}	Pulsed Collector Current @ T _C =80°C	100	A
I_{F}	Diode Continuous Forward Current	50	A
I_{FM}	Diode Maximum Forward Current	100	A
P_{D}	Maximum power Dissipation @ T _j =150℃	230	W
T_{SC}	Short Circuit Withstand Time @ T _j =125°C	10	μs
T _J	Operating Junction Temperature	-40 to +150	$^{\circ}\mathbb{C}$
T _{STG}	Storage Temperature Range	-40 to +150	$^{\circ}\mathbb{C}$
I ² t-value, Diode	V_R =0V, t=10ms, T_j =125°C	400	A^2s
$V_{\rm ISO}$	Isolation Voltage RMS, f=50Hz, t=1min	2500	V
Mounting Torque	Mounting Screw:M5	3 to 6	N.m

Notes:

(1) Repetitive rating: Pulse width limited by max. junction temperature

Electrical Characteristics of IGBT T_C =25 $^{\circ}$ C unless otherwise noted

Off Characteristics

Symbol	Parameter	Test Conditions	Min.	Typ.	Max.	Units
$\mathrm{BV}_{\mathrm{CES}}$	Collector-Emitter	T −25 °C	600			17
	Breakdown Voltage	T _j =25℃	600			V
I _{CES}	Collector Cut-Off Current	$V_{\text{CE}}=V_{\text{CES}}, V_{\text{GE}}=0V,$			1	mA
		T _j =25 ℃				
ī	Gate-Emitter Leakage	$V_{GE}=V_{GES}, V_{CE}=0V,$			100	A
I_{GES}	Current	T _j =25℃			100	nA

On Characteristics

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Units
$V_{\text{GE(th)}}$	Gate-Emitter Threshold Voltage	I_{C} =250 μ A, V_{CE} = V_{GE} , T_{j} =25 $^{\circ}$ C	3.5	4.5	5.5	V
V _{CE(sat)}	Collector to Emitter	$I_{C}=50A, V_{GE}=15V,$ $T_{j}=25$ °C		2.5	2.9	V
	Saturation Voltage	I_{C} =50A, V_{GE} =15V, T_{j} =125°C			3.1	v

Switching Characteristics

Symbol	Parameter	Test Conditions	Min.	Typ.	Max.	Units
t _{d(on)}	Turn-On Delay Time	V_{CC} =300V, I_{C} =50A, R_{G} =10 Ω , V_{GE} = ±15V,		46		ns
t_r	Rise Time			28		ns
$t_{d(off)}$	Turn-Off Delay Time			185		ns
t_{f}	Fall Time			31		ns
Eon	Turn-On Switching Loss	$T_j=25^{\circ}\mathbb{C}$		1.5		mJ
E_{off}	Turn-Off Switching Loss			3.3		mJ
t _{d(on)}	Turn-On Delay Time			55		ns
t_r	Rise Time			40		ns
$t_{d(off)}$	Turn-Off Delay Time	V_{CC} =300V, I_{C} =50A,		215		ns
t_{f}	Fall Time	$R_{G}=10\Omega, V_{GE}=\pm 15V,$		42		ns
Eon	Turn-On Switching Loss	$T_{j}=125^{\circ}C$		2		mJ
E _{off}	Turn-Off Switching Loss			4.3		mJ
Cies	Input Capacitance			1.79		nF
Coes	Output Capacitance	V_{CE} =25V, f=1MHz,		0.16		nF
C_{res}	Reverse Transfer Capacitance	$V_{GE} = 0V$		0.07		nF
I_{SC}	SC Data	$T_P \le 10us$, $V_{GE}=15V$, $T_j=125$ °C, $V_{CC}=360V$, $V_{CEM} \le 600V$		270		A
L_{CE}	Stray inductance			30		nН
R _{CC'+EE'}	Module lead resistance, terminal to chip	T _C =25℃		2.20		mΩ

Electrical Characteristics of DIODE T_C=25°C unless otherwise noted

Symbol	Parameter	Test Condit	ions	Min.	Тур.	Max.	Units
V	Diode Forward	I _F =50A	T _j =25℃		1.3	1.7	V
V_{FM}	Voltage	1F-30A	T _j =125℃		1.4	1.8	V
0	Diode Reverse		T _j =25℃		2.1		
Qr	Recovered charge	$I_F=50A, V_R=300V,$	T _j =125℃		3.4		μC
	Diode Peak		T _j =25℃		60		
I_{RM}	Reverse Recovery Current	di/dt=-2600A/μs, V _{GE} =-15V	T _j =125℃		68		A
Б	Reverse Recovery	V GE13 V	T _j =25℃		0.42		mJ
E _{rec}	Energy		T _j =125℃		0.71		111J

Electrical Characteristics of NTC T_C =25°C unless otherwise noted

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Units
R ₂₅	Rated resistance			5.0		kΩ
$\Delta R/R$	Deviation of R ₁₀₀	$R_{100}=439\Omega$	5		5	%
P ₂₅	Power dissipation				20.0	mW
B _{25/50}	B-value	R2=R ₂₅ exp[B _{25/50} (1/T2-1/(298. 15K))]		3375		K

Thermal Characteristics

Symbol	Parameter	Тур.	Max.	Units
$R_{\theta JC}$	Junction-to-Case (IGBT Part, per 1/2 Module)		0.45	°C/W
$R_{\theta JC}$	Junction-to-Case (DIODE Part, per 1/2 Module)		0.85	°C/W
$R_{\theta CS}$	Case-to-Sink (Conductive grease applied)	0.05		°C/W
Weight	Weight of Module	180		g

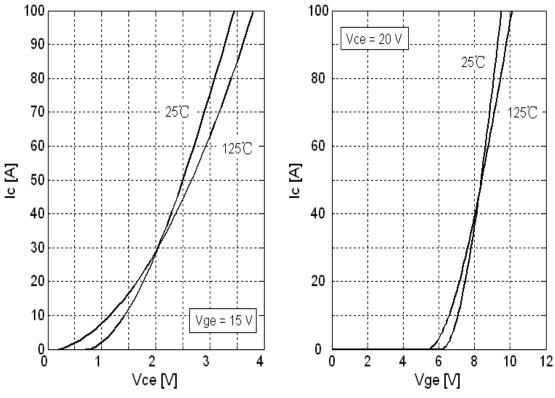


Fig 1. Typical Output Characteristics

Fig 2. Typical Transfer Characteristics

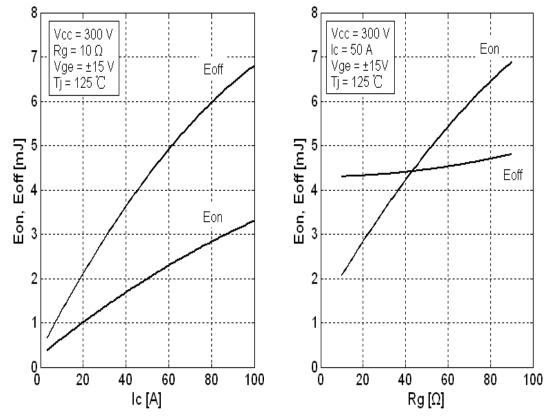


Fig 3.Switching Loss vs. Collector Current

Fig 4. Switching Loss vs. Gate Resistor

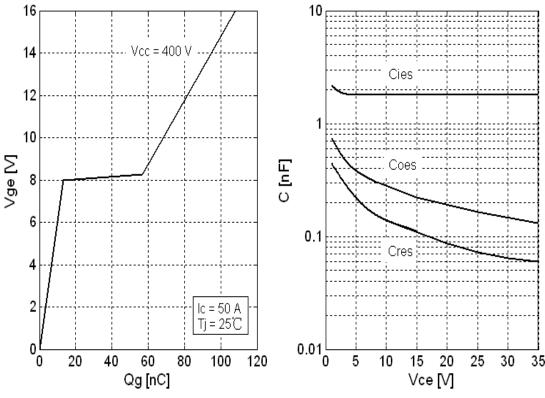


Fig 5. Gate Charge Characteristics.

Fig 6. Typical Capacitance vs.

Collector-Emitter Voltage

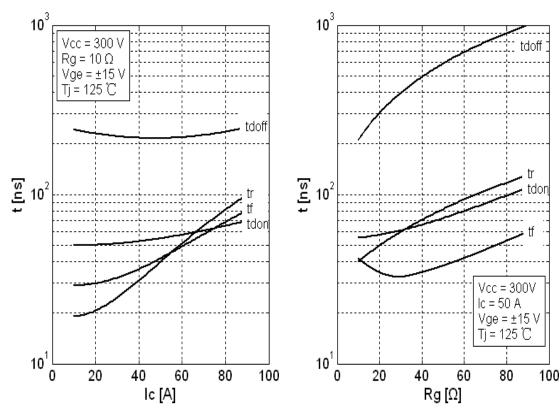


Fig 7. Typical Switching Times vs. $I_{\rm C}$

Fig 8. Typical Switching Times vs. Gate Resistance $R_{\rm G}$

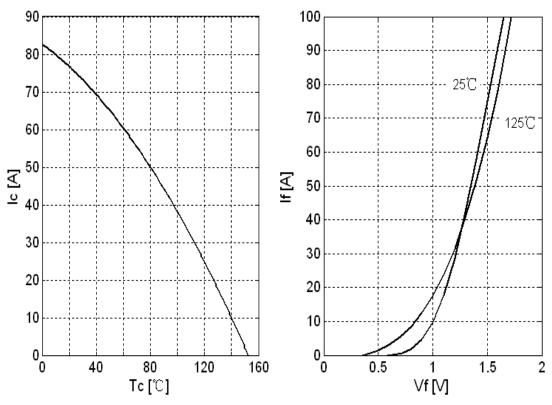


Fig 9. Maximum DC Collector Current vs.
Case Temperature

Fig 10. Typical Forward Characteristics (diode)

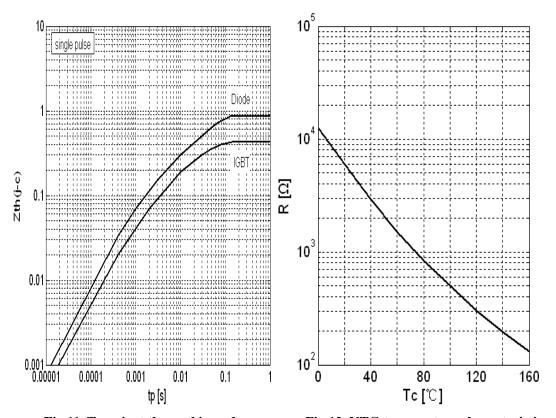
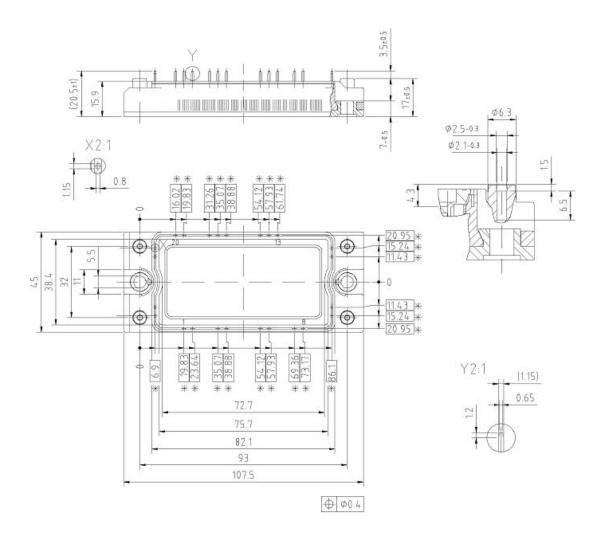



Fig 11. Transient thermal impedance

Fig 12. NTC-temperature characteristic

Package Dimension

Dimensions in Millimeters

Terms and Conditions of usage

The data contained in this product datasheet is exclusively intended for technically trained staff. you and your technical departments will have to evaluate the suitability of the product for the intended application and the completeness of the product data with respect to such application.

This product data sheet is describing the characteristics of this product for which a warranty is granted. Any such warranty is granted exclusively pursuant the terms and conditions of the supply agreement. There will be no guarantee of any kind for the product and its characteristics.

Should you require product information in excess of the data given in this product data sheet or which concerns the specific application of our product, please contact the sales office, which is responsible for you (see www.powersemi.com), For those that are specifically interested we may provide application notes.

Due to technical requirements our product may contain dangerous substances. For information on the types in question please contact the sales office, which is responsible for you.

Should you intend to use the Product in aviation applications, in health or live endangering or life support applications, please notify.

If and to the extent necessary, please forward equivalent notices to your customers. Changes of this product data sheet are reserved.