STARPOWER

SEMICONDUCTOR

IGBT

GD75HCU120B3S

Molding Type Module

1200V/75A 4 in one-package

General Description

STARPOWER IGBT Power Module provides ultrafast switching speed as well as short circuit ruggedness. It's designed for the applications such as electronic welder and inductive heating.

Features

- NPT IGBT technology
- 10µs short circuit capability
- Low switching losse
- V_{CE(sat)} with positive temperature coefficient
- Square RBSOA
- Low inductance case
- Fast & soft reverse recovery anti-parallel FWD
- Isolated copper baseplate using DBC technology

Typical Applications

- Switching mode power supplies
- Inductive heating
- Electronic welder

IGBT-inverter T_C =25°C unless otherwise noted

Maximum Rated Values

Symbol	Description	GD75HCU120B3S	Units	
V_{CES}	Collector-Emitter Voltage @ T _i =25 ℃	1200	V	
V_{GES}	Gate-Emitter Voltage @ T _j =25 ℃	±20	V	
т	Collector Current @ T _C =25°C	110		
I_{C}	@ T _C =80°C	75	Α	
I_{CM}	Pulsed Collector Current t _p =1ms	150	A	
P _{tot}	Total Power Dissipation @ T _j =150℃	595	W	

Off Characteristics

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Units
V _{(BR)CES}	Collector-Emitter	$T_i=25^{\circ}C$	1200			V
	Breakdown Voltage	1 _j =23 ©	1200			'
I_{CES}	Collector Cut-Off	$V_{CE}=V_{CES}, V_{GE}=0V,$			5.0	mA
	Current	$T_j=25^{\circ}C$		3.0	IIIA	
I_{GES}	Gate-Emitter Leakage	$V_{GE}=V_{GES}, V_{CE}=0V,$			400	n 1
	Current	$T_j=25^{\circ}C$			400	nA

On Characteristics

Symbol	Parameter	Test Conditions	Min.	Typ.	Max.	Units
$V_{\text{GE(th)}}$	Gate-Emitter Threshold Voltage	$I_{C}=1.5$ mA, $V_{CE}=V_{GE}$, $T_{j}=25$ °C	4.8	5.5	6.3	V
V _{CE(sat)}	Collector to Emitter Saturation Voltage	$I_{C}=75A, V_{GE}=15V,$ $T_{j}=25^{\circ}C$		2.90	3.35	V
		I_{C} =75A, V_{GE} =15V, T_{j} =125°C		3.60		V

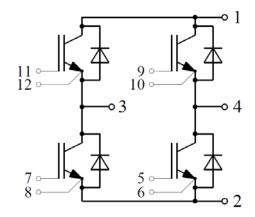
Switching Characteristics

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Units
$t_{d(on)}$	Turn-On Delay Time			205		ns
$t_{\rm r}$	Rise Time			49		ns
$t_{d(off)}$	Turn-Off Delay Time	V -600VI -75 A		262		ns
$t_{\rm f}$	Fall Time	$V_{CC}=600V,I_{C}=75A,$		137		ns
Eon	Turn-On Switching Loss	$\begin{cases} R_G=8.6\Omega, V_{GE}=\pm 15V, \\ T_j=25^{\circ}C \end{cases}$		6.30		mJ
$E_{\rm off}$	Turn-Off Switching Loss			2.46		mJ
t _{d(on)}	Turn-On Delay Time			205		ns
$t_{\rm r}$	Rise Time			50		ns
$t_{d(off)}$	Turn-Off Delay Time	$V_{CC}=600V,I_{C}=75A,$		275		ns
t_{f}	Fall Time	$R_{G}=8.6\Omega, V_{GE}=\pm15V,$		170		ns
Eon	Turn-On Switching Loss	$T_{j}=125^{\circ}C$		8.25		mJ
E _{off}	Turn-Off Switching Loss			3.62		mJ
Cies	Input Capacitance			5.18		nF
C _{oes}	Output Capacitance	$V_{CE}=25V,f=1MHz,$		0.78		nF
C _{res}	Reverse Transfer Capacitance	$V_{GE}=0V$		0.35		nF
I_{SC}	SC Data	$\begin{array}{c} t_{P}\!\!\leq\!\!10\mu s, \! V_{GE}\!\!=\!\!15V, \\ T_{j}\!\!=\!\!125^{\circ}\!\!C, \! V_{CC}\!\!=\!\!900V, \\ V_{CEM}\!\!\leq\!\!1200V \end{array}$		660		A
Q_{G}	Gate Charge	V _{CC} =600V,I _C =75A, V _{GE} =-15 +15V		0.5		μС
R _{Gint}	Internal Gate Resistance			/		Ω

$\textbf{Diode-inverter} \ \, T_{\text{C}}\!\!=\!\!25\,^{\circ}\!\text{C unless otherwise noted}$

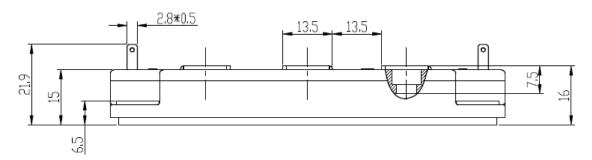
Maximum Rated Values

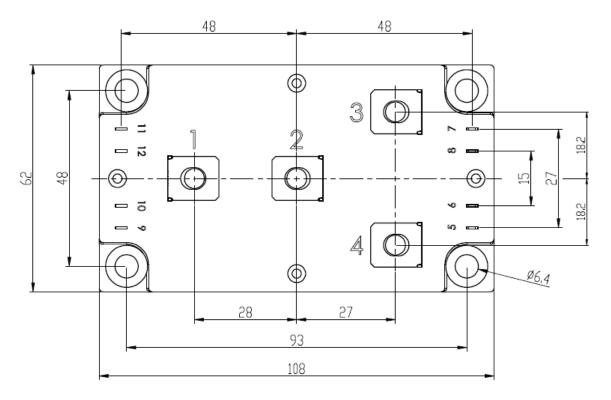
Symbol	Description	GD75HCU120B3S	Units
V_{RRM}	Repetitive Peak Reverse Voltage @ T _j =25°C	1200	V
I_{F}	DC Forward Current	30	A
I_{FRM}	Repetitive Peak Forward Current t _p =1ms	60	A


Characteristics Values

Symbol	Parameter	Test Conditions		Min.	Typ.	Max.	Units
$V_{\rm F}$	Diode Forward	I -20A	T _j =25 ℃		1.90	2.30	V
	Voltage	$I_F=30A$	T _j =125 ℃		1.80		V
Qr	Recovered		T _j =25 ℃		2.6		μС
	Charge	$I_F = 30A$,	T _j =125 ℃		4.2		
I_{RM}	Peak Reverse	$V_R = 600 V$,	$T_j=25^{\circ}C$		20		۸
	Recovery Current	$R_G=15\Omega$,	T _i =125 ℃		23		Α
E_{rec}	Reverse Recovery	$V_{GE}=-15V$	T _j =25 ℃		1.31		mJ
	Energy		T _i =125℃		2.08		1113

IGBT Module


Symbol	Parameter	Min.	Typ.	Max.	Units
$V_{\rm ISO}$	Isolation Voltage RMS,f=50Hz,t=1min	2500			V
D	Junction-to-Case (per IGBT-inverter)			0.210	K/W
$R_{ heta JC}$	Junction-to-Case (per Diode-inverter)			0.927	K/W
$R_{ heta CS}$	Case-to-Sink (Conductive grease applied)		0.035		K/W
T_{jmax}	Maximum Junction Temperature			150	$^{\circ}$ C
T_{jop}	Operating Junction Temperature	-40		125	$^{\circ}$ C
T_{STG}	Storage Temperature Range	-40		125	$^{\circ}$ C
Mounting	Power Terminal Screw:M5	2.5		5.0	N.m
Torque	Mounting Screw:M6	3.0		6.0	IN.III
G	Weight of Module		300		g


Equivalent Circuit Schematic

Package Dimensions

Dimensions in Millimeters

©2012 STARPOWER Semiconductor Ltd.

11/9/2012

5/6

Preliminary

Terms and Conditions of Usage

The data contained in this product datasheet is exclusively intended for technically trained staff. you and your technical departments will have to evaluate the suitability of the product for the intended application and the completeness of the product data with respect to such application.

This product data sheet is describing the characteristics of this product for which a warranty is granted. Any such warranty is granted exclusively pursuant the terms and conditions of the supply agreement. There will be no guarantee of any kind for the product and its characteristics.

Should you require product information in excess of the data given in this product data sheet or which concerns the specific application of our product, please contact the sales office, which is responsible for you (see www.powersemi.cc), For those that are specifically interested we may provide application notes.

Due to technical requirements our product may contain dangerous substances. For information on the types in question please contact the sales office, which is responsible for you.

Should you intend to use the Product in aviation applications, in health or live endangering or life support applications, please notify.

If and to the extent necessary, please forward equivalent notices to your customers. Changes of this product data sheet are reserved.