STARPOWER

SEMICONDUCTOR

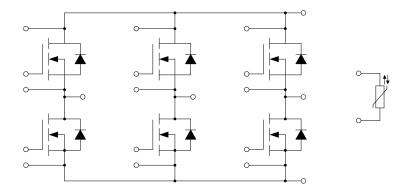
MOSFET

MD900FFM100B7S

100V/900A 6 in one-package

General Description

STARPOWER MOSFET Power Module provides very low $R_{DS(on)}$ as well as optimized intrinsic diode. It's designed for the applications such SMPS and DC drives.


Features

- Low R_{DS(on)}
- Optimized intrinsic reverse diode
- Low inductance case avoid oscillations
- Kelvin source terminals for easy drive
- Isolated heatsink using DBC technology

Typical Applications

- Main and auxiliary AC drives of electric vehicles
- DC servo and robot drives
- Battery vehicles
- UPS equipment
- Plasma cutting

Equivalent Circuit Schematic

Absolute Maximum Ratings

MOSFET

Symbol	Description	Value	Unit
$ m V_{DSS}$	Drain-Source Voltage	100	V
$ m V_{GSS}$	Gate-Source Voltage	±30	V
I_{D}	Drain Current	900	A
$\overline{I_{DM}}$	Pulsed Drain Current	2680	A

Inverse Diode

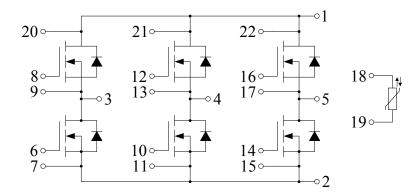
Symbol	Description	Value	Unit
I_S	Source Current	900	Α
I_{SM}	Pulsed Source Current	2680	Α

Module

Symbol	Description Value		Unit
T _{imax}	Maximum Junction Temperature	175	°C
T_{jop}	Operating Junction Temperature	-40 to +150	°C
T_{STG}	Storage Temperature Range	-40 to +125	°C
$V_{\rm ISO}$	Isolation Voltage RMS,f=50Hz,t=1min	2500	V
M	Terminal Connection Torque, Screw M5	2.5 to 5.0	N.m

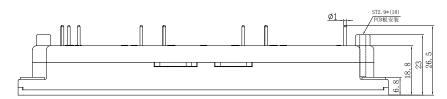
MOSFET Characteristics

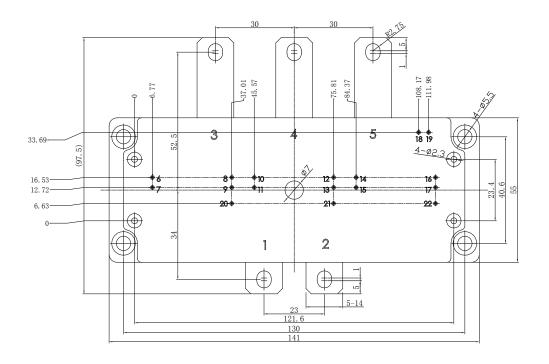
Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
R _{DS(on)}	Static Drain-Source On-Resistance	I_D =400A, V_{GS} =10V, T_j =25°C			2.25	mΩ
$V_{\text{GS(th)}}$	Gate-Source Threshold Voltage	$I_D=1.0 \text{mA}, V_{DS}=V_{GS}, T_j=25^{\circ}\text{C}$	3.0		5.0	V
$g_{ m fs}$	Forward Transconductance	$V_{DS} = 50V, I_D = 400A$	208			S
I_{DSS}	Drain-Source Leakage Current	$V_{DS}=V_{DSS}, V_{GS}=0V,$ $T_i=25^{\circ}C$			100	μΑ
I_{GSS}	Gate-Source Leakage Current	$V_{GS}=V_{GSS}, V_{DS}=0V,$ $T_i=25^{\circ}C$			400	nA
R_{Gint}	Internal Gate Resistance			0.68		Ω
C_{iss}	Input Capacitance			27.2		nF
C_{oss}	Output Capacitance	V_{GS} =0V, V_{DS} =25V, f=1.0MHz		9.88		nF
C_{rss}	Reverse Transfer Capacitance			3.96		nF
Q_g	Total Gate Charge			1040		nC
Q_{gs}	Gate-Source Charge	I_D =400A, V_{DS} =80V, V_{GS} =10V		196		nC
Q_{gd}	Gate-Drain ("Miller") Charge			640		nC
$t_{d(on)}$	Turn-On Delay Time	$ \begin{array}{c} V_{DS} = 50 \text{V}, I_D = 400 \text{A}, \\ R_G = 0.26 \Omega, V_{GS} = 10 \text{V}, \\ T_j = 25 ^{\circ} \text{C} \end{array} $		25		ns
$t_{\rm r}$	Rise Time			270		ns
$t_{d(off)}$	Turn-Off Delay Time			45		ns
$t_{\rm f}$	Fall Time			140		ns

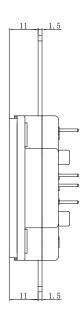

Inverse Diode Characteristics

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
V_{SD}	Diode Forward Voltage	I_S =400A, V_{GS} =0V, T_j =25°C			1.30	V
t_{rr}	Diode Reverse Recovery Time	V_R =50V, I_S =400A, -di/dt=400A/ μ s, T_j =25°C, V_{GS} =0V			220	ns
Qr	Diode Reverse Recovery Charge			6.56		μС

NTC Characteristics


Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
R ₂₅	Rated Resistance	$T_j=25^{\circ}C$		5.0		kΩ
$\Delta R/R$	Deviation of R ₁₀₀	$T_j=100^{\circ}\text{C}, R_{100}=493.3\Omega$	-5		5	%
P ₂₅	Power Dissipation				20.0	mW
B _{25/50}	B-value	R ₂ =R ₂₅ exp[B _{25/50} (1/T ₂ - 1/(298.15K))]		3375		K


Circuit Schematic



Package Dimensions

Dimensions in Millimeters

Terms and Conditions of Usage

The data contained in this product datasheet is exclusively intended for technically trained staff. you and your technical departments will have to evaluate the suitability of the product for the intended application and the completeness of the product data with respect to such application.

This product data sheet is describing the characteristics of this product for which a warranty is granted. Any such warranty is granted exclusively pursuant the terms and conditions of the supply agreement. There will be no guarantee of any kind for the product and its characteristics.

Should you require product information in excess of the data given in this product data sheet or which concerns the specific application of our product, please contact the sales office, which is responsible for you (see www.powersemi.cc), For those that are specifically interested we may provide application notes.

Due to technical requirements our product may contain dangerous substances. For information on the types in question please contact the sales office, which is responsible for you.

Should you intend to use the Product in aviation applications, in health or live endangering or life support applications, please notify.

If and to the extent necessary, please forward equivalent notices to your customers. Changes of this product data sheet are reserved.